Orcid ID:

Geoff Willmott

Dynamic Microfluidics

  • Broom, M., Willmott, G. R., “Water drop impacts on regular micropillar arrays: Asymmetric spreading,” Physics of Fluids (accepted, 2023).
  • Cordwell, A., Chapple, A. Chung, S., Wells, F. S., Willmott, G. R., “Ferrofluid Drop Impacts and Rosensweig Peak Formation in a Non-Uniform Magnetic Field,” Soft Matter 19, 4676-4685 (2023).
  • Broom, M., Willmott, G. R., “Water Drop Impacts on Regular Micropillar Arrays: The Impact Region,” Physics of Fluids 34, 017115 (2022)editor’s choice.
  • Abdollahi, A., Wells, F. S., Sefidan, A. M., Sellier, M., Hewett, J. N., Willmott, G. R., “Drop Impact of Dairy Product Solutions at the Onset of Drying,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 653, 129983 (2022).
  • Balzan, M., Abdollahi, A., Wells, F. S., Willmott, G. R., “Drop impact of non-Newtonian dairy-based solutions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 625, 126895 (2021).
  • Schmid, G., Kingan, M. J., Panton, L., Willmott, G. R., Yang, Y., Decraene, C., Reynders, E. and Hall, A. “On the Measurement and Prediction of Rainfall Noise,” Applied Acoustics 171, 107636 (2021).
  • Willmott, G. R., Briole, A., and Szczepaniak, F., “Inertial capillary uptake of drops,” Phys. Rev. E. 101, 043109 (2020).
  • Rashidian, H., Broom, M., Willmott, G. R. and Sellier, M., “Effects of a microscale ridge on dynamic wetting during drop impact,” J. Roy. Soc. NZ, DOI:10.1080/03036758.2019.1706587 (2020).
  • Broom, M. A. J. and Willmott, G. R., “High throughput analysis of liquid droplet impacts,” Journal of Visual Experiments 157, e60778 (2020).
  • Agarwal, P., Khun, D., Krösser, S., Eickhoff, K., Wells, F. S., Willmott, G. R., Craig, J. P. and Rupenthal, I. D., “Preclinical studies evaluating the effect of semifluorinated alkanes on ocular surface and tear fluid dynamics,” The Ocular Surface 17, 241-249 (2019).
  • Lardier, N., Roudier, P., Clothier, B. and Willmott, G. R., “Spread, Cratering and Penetration during Water Drop Impacts on Sand and Soil,” European Journal of Soil Science 70, 245-256 (2019).
  • Willmott, G. R., “Characterization and Control of Water Drops on Structured Hydrophobic Surfaces,” Chemistry in New Zealand 82, 38-44 (2018).
  • Robson, S. and Willmott, G. R., “Asymmetries in the Spread of Drops Impacting on Hydrophobic Micropillar Arrays,” Soft Matter 12, 4853-4865 (2016).
  • Radionova, A., Greenwood, D. R., Willmott, G. R. and Derrick, P. J., “Dual Nano-Electrospray and Mixing in the Taylor Cone,” Mass Spectrometry Letters 7, 21-25 (2016).
  • Fritsch, A., Willmott, G. R. and Taylor, M., “Superhydrophobic New Zealand Leaves: Contact Angle and Drop Impact Experiments,” J. Roy. Soc. New Zeal. 43, 198-210 (2013).

  • Willmott, G. R., Neto, C. and Hendy, S. C., “Uptake of Water Droplets by Nonwetting Capillaries,” Soft Matter 7, 2357-2363 (2011) – [issue cover image].

  • Willmott, G. R., Neto, C. and Hendy, S. C., “Dynamics of Drop Size-Dependent Uptake in Non-Wetting Capillaries,” Faraday Discuss. 146, 233-245 (2010).


  • Lacalendola, N., Willmott, G. R., “Measurement of Viscoelastic Particle Deformation using Pipette Ion Currents,” Sensors and Actuators A 344, 113698 (2022).
  • Lacalendola, N., A. Tayagui, A., Ting, M., Malmstrom, J., Nock, V., Willmott, G. R., Garrill, A. “Biomechanical Responses of Encysted Zoospores of the Oomycete Achlya Bisexualis to Hyperosmotic Stress Are Consistent with an Ability to Turgor Regulate,” Fungal Genetics and Biology 159, 103676 (2022)journal cover.
  • Pradhan, S., Solomon, R., Gangotra, A., Yakubov, G. E., Willmott, G. R., Whitby, C. P., Hale, T., Williams, M. A. K., “Depletion of HP1α alters the mechanical properties of MCF7 nuclei,” Biophys. J. 120, 2631-2643 (2021)journal cover.
  • Gangotra, A., Biviano, M., Dagastine, R. R., Berry, J. D. and Willmott, G. R., “Use of microaspiration to study the mechanical properties of polymer gel microparticles,” Soft Matter 15, 7286-7294 (2019).
  • Gangotra, A. and Willmott, G. R., “Mechanical properties of bovine erythrocytes derived from ion current measurements using micropipettes,” Bioelectrochemistry 128, 204-210 (2019).
  • Gangotra, A. and Willmott, G. R., “Cellular and Sub-cellular Mechanics: Measurement of Material Properties,” Chapter in Comprehensive Nanoscience and Nanotechnology, D. L. Andrews et al. Eds., Elsevier (2019) pp. 227-243.
  • Willmott, G. R., “Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids,” Anal. Chem. 90, 2987-2995 (2018).
  • Gangotra, A. and Willmott, G. R., “Scanning ion conductance microscopy mapping of tunable nanopore membranes,” Biomicrofluidics 11, 054102 (2017).
  • Weatherall, E., Hauer, P., Vogel, R. and Willmott, G. R., “Pulse Size Distributions in Tunable Resistive Pulse Sensing,” Anal. Chem. 88, 8648-8656 (2016).
  • Hauer, P., Grand, J., Djorovic, A., Willmott, G. R., & Le Ru, E. C., “Spot Size Engineering in Microscope-Based Laser Spectroscopy,” J. Phys. Chem. C 120, 21104–21113 (2016).
  • Weatherall, E. and Willmott, G. R., “Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing,” J. Phys. Chem. B 119, 5328-5335 (2015).
  • Hauer, P., Le Ru, E. C. and Willmott, G. R., “Co-ordinated Detection of Microparticles using Tunable Resistive Pulse Sensing and Fluorescence Spectroscopy,” Biomicrofluidics 9, 014110 (2015).
  • Weatherall, E. and Willmott, G. R., “Applications of Tunable Resistive Pulse Sensing,” Analyst 10, 3318-3334 (2015).
  • Eldridge, J. A., Willmott, G. R., Anderson, W. and Vogel, R., “Nanoparticle Zeta-Potential Measurements using Tunable Resistive Pulse Sensing with Variable Pressure,” J. Coll. Interf. Sci. 429, 45-52 (2014).
  • Willmott, G. R. and Smith, B. G., “Modelling of Resistive Pulse Sensing: Flexible Methods for Submicron Particles,” ANZIAM J. 55, 197-213 (2014).
  • Alsager, O. A., Kumar, S., Willmott, G. R., McNatty, K. P. and Hodgkiss, J. M. “Small Molecule Detection in Solution Via the Size Contraction Response of Aptamer Functionalized Nanoparticles,” Biosens. Bioelectron. 57, 262-268 (2014).
  • Vogel, R., Anderson, W., Eldridge, J. E., Glossop, B. and Willmott, G. R., “A Variable Pressure Method for Characterising Nanoparticle Surface Charge using Pore Sensors,” Anal. Chem. 84, 3125-3132 (2012).
  • Vogel, R., Willmott, G. R., Roberts, G. S., Anderson, W., Kozak, D., Groenewegen, L., Glossop, B., Barnett, A., Turner, A. and Trau, M., “Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor,” Anal. Chem. 83, 3499–3506 (2011).
  • Willmott, G. R., Vogel, R., Yu, S. S. C., Groenewegen, L. G., Roberts, G. S., Kozak, D., Anderson, W. and Trau, M. “Use of Tunable Nanopore Blockade Rates to Investigate Colloidal Dispersions,” J. Phys.: Condens. Matter 22, 454116 (2010).
  • Willmott, G. R. and Moore, P. W., “Reversible Mechanical Actuation of Elastomeric Nanopores,” Nanotechnology 19, 475504 (2008).

Janus Particles and Slip

  • Safaei, S., Todd, C., Yarndley, J., Hendy, S. C., Willmott, G. R., “Asymmetric assembly of Lennard-Jones Janus dimers,” Phys. Rev. E 104, 024602 (2021).
  • Safaei, S., Hendy, S. C. and Willmott, G. R., “Stability of amphiphilic Janus dimers in shear flow: a molecular dynamics study,” Soft Matter 16, 7116-7125 (2020).
  • Safaei, A., Archereau, A., Hendy, S. C. and Willmott, G. R., “Molecular dynamics simulations of Janus nanoparticles in a fluid flow,” Soft Matter 15, 6742-6752 (2019).
  • Willmott, G. R., “Slip-Induced Dynamics of Patterned and Janus-like Spheres in Laminar Flows,” Phys. Rev. E 79, 066309 (2009).
  • Willmott, G. R., “Dynamics of a Sphere with Inhomogeneous Slip Boundary Conditions in Stokes Flow,” Phys. Rev. E 77, 055302(R) (2008).
  • Willmott, G. R. and Tallon, J. L., “Measurement of Newtonian Fluid Slip using a Torsional Ultrasonic Oscillator”, Phys. Rev. E 76, 066306 (2007).


  • Willmott, G. R., Sellier, M., Wilgar, C., Montiel, F., “Ka rere ngā mea katoa – everything flows,” J. Roy. Soc. NZ 51, 187-193 (2021)special issue editorial.
  • Kavuri, H. A., Kihara, S., McGillivray, D. and Willmott, G. R., “Polyvinylpyrrolidone modified metal oxide anode interlayers for stable organic solar cells,” Journal of Photonics for Energy 10, 042003 (2020).
  • Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G. R., Vaithilingam, J., Alexander, M. R., Hague, R. J. M. and Rawson, F. J., “Remotely Controlled In Situ Growth of Silver Microwires Forming Bioelectronic Interfaces,” ACS Appl. Mater. Interfaces 11, 8928-8936 (2019).
  • Kavuri, H. A., Fukuda, T., Takahira, K., Takahashi, A., Kihara, S., McGillivray, D. J. and Willmott, G. R., “Electrospray-deposited Vanadium Oxide Anode Interlayers for High-efficiency Organic Solar Cells,” Organic Electronics 57, 239-246 (2018).
  • Willmott, G. R., Hammerschmidt, L., Grimson, M., et al. “’Physics at the Interface’ in Auckland”, AAPPS Bulletin 27, 8-14 (2017).
  • Willmott, G. R. and Proud, W. G., “Shock Hugoniot Studies of Geological Materials Below 10 GPa”, J. Rock Mechs. Min. Sci. 44, 228-237 (2007).

  • Willmott, G. R. and Field, J. E., “Fast Cracks in High-Speed Photographs of Shocked Diamond”, Phil. Mag. 86, 4305-4318 (2006).

  • Willmott, G. R. and Radford, D. D., “Taylor Impact of Glass Rods”, J. Appl. Phys. 97, 1-8 (2005).